تنظیمات برگزیده کاربر و معیارهای CLIP: نتایج عملکرد AnimateDiff در تولید ویدیو

نویسندگان:

(1) Yuwei Guo، دانشگاه چینی هنگ کنگ.

(2) سیوان یانگ، آزمایشگاه هوش مصنوعی شانگهای با نویسنده مسئول.

(3) Anyi Rao، دانشگاه استنفورد.

(4) ژنگ یانگ لیانگ، آزمایشگاه هوش مصنوعی شانگهای؛

(5) Yaohui Wang، آزمایشگاه هوش مصنوعی شانگهای.

(6) یو کیائو، آزمایشگاه هوش مصنوعی شانگهای.

(7) منیش آگراوالا، دانشگاه استنفورد؛

(8) داهوا لین، آزمایشگاه هوش مصنوعی شانگهای؛

(9) بو دای، دانشگاه چینی هنگ کنگ و دانشگاه چینی هنگ کنگ.

چکیده و 1 مقدمه

2 مربوط به کار

3 مقدماتی

  1. AnimateDiff

4.1 کاهش اثرات منفی داده های آموزشی با آداپتور دامنه

4.2 با موشن ماژول Motion Priors را بیاموزید

4.3 با MotionLora با الگوهای حرکتی جدید سازگار شوید

4.4 AnimateDiff در عمل

5 آزمایش و 5.1 نتایج کیفی

5.2 مقایسه کیفی

5.3 مطالعه ابلیتی

5.4 نسل قابل کنترل

6 نتیجه گیری

7 بیانیه اخلاق

8 بیانیه تکرارپذیری، تصدیق و مراجع

5.2 مقایسه کمی

ما مقایسه کمی را از طریق مطالعه کاربر و معیارهای CLIP انجام می دهیم. این مقایسه بر سه جنبه کلیدی متمرکز است: تراز کردن متن، شباهت دامنه و صافی حرکت. نتایج در جدول 1 نشان داده شده است.

Source link